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1 Introduction

Models of competitive markets may have a consumption space of infinite
dimensions, usually arising from models parameterized by time and uncer-
tainty. Within this setting, several authors have addressed the problem
of studying if equilibrium prices are locally unique, including Kehoe et al.
(1989a), Kehoe et al. (1989b, 1990), Balasko (1997a,c), Chichilnisky and
Zhou (1998), Shannon (1999), and Shannon and Zame (2002). Through
these results, it has become clear that in order to study determinacy there
is always a trade-off between the generality of the consumption space, the
generality of utility functions, and the existence and differentiability of in-
dividual demand functions. Nevertheless, Shannon and Zame (2002) have
studied determinacy in enough generality as to consider this questions al-
most closed, at least for models of markets where the Negishi approach is
permitted, i.e., where the first welfare theorem holds.

In spite of the general determinacy results, an area that still remains
largely unexplored is that of counting the number of equilibria. When the
consumption space is finite dimensional, Dierker (1972) gave the first solution
to this problem by constructing an index theorem that showed, among other
things, that the number of equilibria is generically odd.1 He does this by
interpreting the excess demand function as a vector field on the normalized
space of prices, and noticing that equilibria are the zeros of this vector field.
He defines the notion of index of an equilibrium price system and, using the
Poincaré-Hopf Theorem, he shows that the sum of these indices is constant
and equal to 1. Since the number of equilibria is odd, in particular it cannot
be zero and hence Dierker’s index theorem gives a new proof of existence of
equilibria. Additionally, if the index at each equilibrium price is greater than
zero, then the index theorem also gives conditions for global, not just local,
uniqueness of equilibria.

Using index theorems to study questions of existence, stability, the num-
ber of equilibria, and global uniqueness, has a long tradition throughout the
economic literature relying frequently on the arguments provided by Dierker
(1972) and Mas-Colell (1985). For example, index theorems have been con-
structed by Kehoe (1980, 1983) for production economies, Jouini (1992) for

1But also see Balasko (1975b, 1988), Dierker (1982) and Varian (1975).
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nonconvex production economies, Giraud (2001) for production economies
with increasing returns and Mandel (2008) for production economies with
externalities. Another area where this approach has been fruitful is in econ-
omies with incomplete financial markets, for example through the index the-
orems of Hens (1991) for GEI models with a single commodity, Kubler and
Schmedders (1997) for stochastic finance economies, Schmedders (1999) for
an open (but not necessarily generic) set of two-period economies using a
homotopy algorithm, Momi (2003) and Predtetchinski (2006) for economies
where the degree of incompleteness is even, and Anderson and Raimondo
(2007) for GEI models with no Hart points.

The goal of this paper is to construct an index theorem for smooth infinite
economies.2 This will show that the number of equilibria of smooth infinite
economies is odd and hence it provides an alternative proof of existence of
equilibria. Additionally, it provides conditions that guarantee global unique-
ness of equilibria.3 In order to do so, we will use an infinite-dimensional ana-
logue of the Poincaré-Hopf Theorem that was proposed by Tromba (1978).
Tromba’s result is valid only for vector fields that have a very particular
structure — that of a zero-Rothe (Z-Rothe or ZR) vector field — a notion
that we introduce in this paper to the economic literature. A substantial
part of this paper goes into showing that aggregate excess demand functions
of smooth infinite economies do indeed define a Z-Rothe vector field.

This paper is structured as follows. In order to fix ideas, we begin in sec-
tion 2 by reviewing a recent example of an infinite economy with complete
financial markets studied by Crès et al. (2009) as a framework to understand
jumps (or the lack thereof) in asset prices. We then set the market and define
aggregate excess demand functions in our setting; as usual, we will interpret

2Roughly speaking, smooth infinite economies are models of competitive markets where
consumption bundles, and endowments, are continuous functions over the parameters that
define them.

3In infinite dimensions, one of the few results on global uniqueness has been provided by
Dana (1993) by taking into consideration a model of a pure exchange economy where the
agents’ consumption space is Lp

+(µ) and agents have additively separable utilities which
fulfill the (RA) assumption, that is, that the agents’ relative risk aversion coefficients are
smaller than one. In this case, Dana shows that one can work with the space of utility
weights to avoid using the demand approach that may not be well defined. Dana finally
shows that if utilities fulfill the (RA) assumption then the excess utility map is gross
substitute which in turn implies existence and global uniqueness.
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them as vector fields on the space of prices.

Sections 3 and 4 study in detail the structure of aggregate excess demand
functions of smooth infinite economies. First, subsection 3.1 contains a quick
review of the basic definitions of Fredholm theory, which are mathematical
tools needed to extend differential topology to infinite dimensions (further
mathematical definitions are included in an appendix). In section 3.2 we
review the determinacy results obtained previously in Covarrubias (2010)
showing that most excess demand functions have isolated zeros; that is, that
equilibria are locally unique. This guarantees that it makes sense to actually
count the number of equilibria. As we mentioned above, this result is by no
means the strongest determinacy result available: that would be Shannon
and Zame (2002). However, the fact that the determinacy result is written
in terms of aggregate excess demand functions makes the exposition of this
paper more fluid.

In section 4, we review the notion of Z-Rothe vector fields as developed
by Tromba (1978). When an aggregate excess demand function is Z-Rothe,
we can define a suitable index of equilibrium prices, that is, an index of zeros
of a vector field. As mentioned previously, the Poincaré-Hopf Theorem in
infinite dimensions holds for Z-Rothe vector fields. Our Theorem 3 below
will show that indeed smooth infinite economies have an aggregate excess
demand function that is Z-Rothe. Finally, in section 5, we prove the main
theorem where we construct an index theorem for smooth infinite economies.
We show that the sum of indices of equilibrium prices is constant and equal
to 1. We give a corollary to the index theorem analogous to (Dierker, 1972),
giving a new proof of existence of equilibrium and analyzing what condition
an excess demand function needs to fulfill to give rise to a globally unique
equilibrium.
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2 The Market

In order to fix ideas, we begin by explaining a recent examples studied by
Crès et al. (2009) of a smooth infinite economy with financial markets. Many
more examples of infinite economies may be found, for instance, in Mas-Colell
(1991), Mas-Colell and Zame (1991) and Chichilnisky and Zhou (1998).4

Throughout, we will denote

Rn
++ = {x = (x1, . . . , xn) ∈ Rn : xj > 0,∀j = 1, . . . , n} .
Rn

+ = {x = (x1, . . . , xn) ∈ Rn : xj ≥ 0,∀j = 1, . . . , n} .

2.1 An example of a smooth infinite economy

In this example of a pure exchange economy with complete financial markets,
there are two time periods (t = 0, 1). Uncertainty at t = 1 is represented
by a set of states M = [0, 1] and the density of these states is given by a
C1 map π : M → R+. There are i = 1, . . . , I agents and n commodities
at each time period and at each state. A consumption bundle is hence a
pair xi = (x0

i , x
1
i ) where at t = 0 consumption is a vector x0

i ∈ Rn
+ and at

t = 1 it is a map x1
i : M → Rn

+. Each of the I agents is equipped with a
t = 0 initial endowment ω0

i ∈ Rn
++ and a C1 endowment at t = 1 of the form

ω1
i : M → Rn

++. Preferences of each agent i are represented by a utility of
the form

W i(xi) = ũi(x0
i ) +

∫
M

ũi(x1
i (s))π(s) ds.

Crès et al. (2009) (but also see Mas-Colell (1991) and Chichilnisky and
Zhou (1998)) show that if

(p, x1, . . . , xI) =
(
(p0, p1), (x0

1, x
1
1), . . . , (x0

I , x
1
I)
)

is an equilibrium, then p1 and {x1
i }Ii=1 are all continuous maps fromM = [0, 1]

to Rn
++. That is, initial endowments, consumption and prices are all elements

of the same space of continuous maps from M to Rn
++.5

4Other examples of continuous economies usually arise from considerations of time
varying in [0, T ] or when commodities are parametrized by their characteristics.

5Another way of interpreting this result is that, when markets are complete, there are
no “jumps” in equilibrium prices when interpreted as functions of the parameter space M .
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2.2 Other examples of smooth infinite economies

Other examples of smooth infinite economies arise from considerations of
continuous time. For instance, suppose that in an economy the consumption
of n goods is done continuously through time t ∈ [0, T ]. Then, a continuous
function xi : [0, T ] → Rn

++ represents the consumption of the n goods by
agent i at time t. Alternatively, x(t) may represent a continuous instanta-
neous rate of consumption.

2.3 The economy

In this section we set the market. We will define the consumption and price
sets, preferences and demand functions. We remind the reader that at the
end of the paper is an appendix with some mathematical definitions.

2.3.1 The commodity, consumption and price sets

Let M be a compact (i.e. closed and bounded) subset of Rm for some m. The
example to keep in mind is M = [0, 1] or M = [0, 1]T if we allow for several
time periods. The commodity space is the set C(M,Rn) of all continuous
functions from M to Rn equipped with the norm

‖f‖ = sup
t∈M
‖f(t)‖Rn

with the standard norm ‖ · ‖Rn on Rn. Abusing notation, we will sometimes
drop the explicit mention of Rn.

The consumption set is then X = C++(M,Rn), the positive cone of
C(M,Rn). This set consists of all the continuous functions from M to Rn of
the form f = (f1(t), . . . , fn(t)) such that fj(t) > 0 for all j = 1, . . . , n and
for all t ∈M .

Strictly speaking, prices should be in the positive cone of the dual space of
the commodity space C(M,Rn). However, it is shown in Mas-Colell (1991),
Chichilnisky and Zhou (1998) and Crès et al. (2009) that with separable

However, assuming incomplete markets, Crès et al. (2009) provide a robust example of an
economy with discontinuities.
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utilities only a small subset of this space can support equilibria and we can
actually then consider the price space to simply be

S =
{
P ∈ C++(M,Rn) : ‖P‖ = 1

}
where

‖P‖ = sup
t∈M
‖P (t)‖Rn

with the standard metric ‖ · ‖Rn on Rn. We also denote by 〈·, ·〉 the inner
product on C(M,Rn) so that if f, g ∈ C(M,Rn) then

〈f, g〉 =

∫
M

〈f(t), g(t)〉Rn dt

with the standard inner product 〈·, ·〉Rn in Rn. Again, abusing notation, we
will sometimes drop the explicit mention of Rn in the inner product.

2.3.2 Preferences and individual demand functions

We consider a finite number I of agents. Each agent is equipped with pref-
erences represented by a utility function of the form

U i(x) =

∫
M

ui(x(t), t)dt

where ui(x(t), t) : Rn
++×M → R is a strictly monotonic, concave, C2 function

where {y ∈ Rn
++ : ui(y, t) ≥ ui(x, t)} is closed. Hervés-Beloso and Monteiro

(2009) show that such representation is possible and Chichilnisky and Zhou
(1998) show that these assumptions on ui(x(t), t) imply that U i(x) is strictly
monotonic, concave and twice Fréchet differentiable.

The individual demand functions fi : S × (0,∞)→ X of each agent
i are solutions to the optimization problem

fi(P, y) = arg

[
max

〈P (t),x〉=y
U i(x)

]
.

Since we will fix preferences, an exchange economy will be parameter-
ized by the initial endowments ωi ∈ X of each agent i = 1, . . . , I . Finally,
denote ω = (ω1, . . . , ωI) ∈ Ω = XI .
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2.3.3 Aggregate excess demand function.

For a fixed economy ω ∈ Ω the aggregate excess demand function is a
map Zω : S → C(M,Rn) defined by

Zω(P ) =
I∑
i=1

(fi (P, 〈P, ωi〉)− ωi) .

We also define Z : Ω× S → C(M,Rn) by the evaluation

Z(ω, P ) = Zω(P ).

It is shown in Covarrubias (2010) that it satisfies 〈P,Zω(P )〉 = 0 for all
P ∈ S, which in turn implies that Zω can be interpreted as a vector field
on the set of prices S. When thought of as a vector field, we will write
Zω : S → TS where TS is the tangent bundle of S.

Definition 1. We say that P ∈ S is an equilibrium of the economy ω ∈ Ω
if Zω(P ) = 0. We denote the equilibrium set by

Γ = {(ω, P ) ∈ Ω× S : Z(ω, P ) = 0} .
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3 Determinacy of Equilibria

We wish to explore the structure of aggregate excess demand functions and
since we will be using tools of differential topology in infinite dimensions,
we would like our maps to be Fredholm as introduced by Smale (1965). We
briefly remind the reader of these definitions.6

3.1 Fredholm index theory

A linear Fredholm operator is a continuous linear map L : E1 → E2 from
one Banach space to another with the properties:

1. dim ker L <∞;

2. range L is closed;

3. coker L := E2/rangeL has finite dimension.

If L is a Fredholm operator, then its index is dim kerL − dim cokerL,
so that the index of L is an integer.

6As a motivation for Fredholm maps, suppose that we consider a linear map T between
any two vector spaces V and W . We may ask ourselves, what conditions would T need to
satisfy in order for it to be a bijection, that is, a map that is both injective and surjective?
If T were a bijection, this would also mean that T is invertible.

There are two basic results of linear algebra that would answer this question. First,
recall that the kernel of T , or kerT , consists of those points of V that are mapped into
zero in W under T . In order for T to be injective, we would require that kerT = {0}.
Similarly, recall that the range of T , or rangeT , consists of all those points that are in the
image under T in W . For T to be surjective, we would require that rangeT = W .

As it happens, these two conditions are rather restrictive. Fredholm operators were in-
troduced since, loosely speaking, they are “almost invertible”: they are “almost injective”
and “almost surjective”. By this we mean that kerT is a finite-dimensional subspace of
V (not just the point {0} but also not an infinite-dimensional set) and the range of T
“misses” the entire set W only by a finite-dimensional subspace.

Expanding these notions, two linear maps T : V → W and S : W → V are “pseudo-
inverses” to each other if ST = I +G1 and TS = I +G2, where I is the identity and G1

and G2 are two maps with finite-dimensional range. In other words, while ST and TS are
not the identity, they fail to be so only by a “compact perturbation” of the identity. It
can be shown that T : V → W will have a pseudo-inverse if and only if T is a Fredholm
operator. Fredholm maps are the nonlinear notion of a Fredholm operator.
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A Fredholm map is a C ′ map f : M → V between differentiable man-
ifolds locally like Banach spaces such that for each x ∈ M the derivative
Df(x) : TxM → Tf(x)V is a Fredholm operator. The index of f is defined
to be the index of Df(x) for some x. If M is connected, this definition does
not depend on x.

3.2 Determinacy of equilibria

In our previous work (2010) we have shown that the excess demand function
Zω : S → C(M,Rn) of economy ω ∈ Ω is a Fredholm map of index zero.
Since we would like to count the number of price equilibria of an economy,
the first result that we need to establish is that generically equilibria will be
isolated. Below we remind the reader the notion of a regular economy and
of a regular price system.

Definition 2. We say that an economy is regular (resp. critical) if and
only if ω is a regular (resp. critical) value of the projection π : Ω×S|Γ → Ω.

Definition 3. Let Zω be the excess demand of economy ω. A price system
P ∈ S is a regular equilibrium price system if and only if Zω(P ) = 0
and the derivative of Zω(P ), denote DZω(P ), is surjective.

In our previous work (2010) we showed the relation between regular econ-
omies and regular equilibrium prices.

Theorem 1. (Covarrubias, 2010) The economy ω ∈ Ω is regular if and only
if all equilibrium prices of Zω are regular.

Theorem 2 showed that for most economies, its aggregate excess demand
function will have isolated zeros. Hence, it makes sense to try to count them.

Theorem 2. (Covarrubias, 2010) Almost all economies are regular. That
is, the set of economies ω ∈ Ω that give rise to an excess demand function

9



Zω with only regular equilibrium prices, are residual in Ω.

Since we haven shown that most excess demand functions Zω will have
isolated zeros, we will drop the explicit dependence on a generic economy ω
and will simply write Z. Again, we remind the reader that Theorem 2 above
is not the strongest determinacy result available (cf. Shannon and Zame
(2002)).

4 Z-Rothe Vector Fields

Knowing that the aggregate excess demand function is a vector field on the
price space, and that is a Fredholm map for which we know its index, we
would like to know if it has the structure of a Z-Rothe vector field as devel-
oped by Tromba (1978).7

To define this, let E be any Banach space and L(E) be the set of linear
continuous maps from E to itself. Denote by GL(E) the general linear group
of E; that is, the set of invertible linear maps in L(E). Let C(E) be the
linear space of compact linear maps from E to itself. We write

LC(E) = {T : T = I + C, I the identity, C ∈ C(E)} .

We write S(E) ⊂ GL(E) to denote the maximal starred neighborhood of
the identity in GL(E). Formally,

S(E) = {T ∈ GL(E) : (αT + (1− α)I) ∈ GL(E),∀α ∈ [0, 1]} .

The Rothe set of E is defined as

R(E) = {A : A = T + C, T ∈ S(E), C ∈ C(E)}

and its invertible members by GR(E) = R(E) ∩GL(E).

7We remind the reader that an appendix is provided at the end of the paper with some
relevant mathematical concepts.
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Definition 4. A C1 vector field v on a Banach manifold N is a Z-Rothe
vector field if whenever v(P ) = 0, the Frèchet derivative Dv(P ) ∈ R(TPN).

Theorem 3. The excess demand function, Z is a Z-Rothe vector field.

Proof. To show that Z : S → TS is Z-Rothe, where TS denotes the tangent
bundle to S, we need to show that whenever Z(P ) = 0, then its Fréchet
derivative DZ can be written of the form T +C where T is an invertible map
and in the maximal starred neighborhood of the identity in GL(TPS) and
where C is a compact map. While the explicit calculation of Z has been done
in previous work (2010), we nevertheless put to use part of those calculations
in this proof for the sake of completeness.

Recall that the consumers’ problem is given by

max
xi∈X

U i(xi) s.t. 〈P, xi〉 = yi

where

• X = C++(M,Rn);

• U i : X → R is given by U i(xi) =
∫
M
ui(xi(t), t) dt;

• ui : Rn
++ ×M → R with the usual assumptions of smoothness, strict

concavity and monotonicity;

• In principle, P is an element of the positive cone of the dual of C(M,Rn).
However, we have explained that with separable utilities, actually P is
an element of C++(M,Rn);

• Furthermore, we normalise so that

P ∈ S =
{
P ∈ C++(M,Rn) : ‖P‖ = 1

}
;

• yi ∈ (0,∞).
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Notice that P ∈ S is an independent (exogenous) variable of the con-
sumer problem. Also, eventually, we will make yi = 〈P, ωi〉.

Now, because of the assumptions that we have placed on the utility func-
tions ui (smoothness, concavity, monotonicity), this implies that for each
P ∈ S and for each yi ∈ (0,∞) the optimization problem has a unique solu-
tion that we will denote by fi(P, yi) where fi : S × (0,∞)→ X.

The first order optimality conditions can then be written as:

yi = 〈P, fi(P, yi)〉 (1)

DU i(fi(P, yi)) = λi(P, yi) · P (2)

where DU i denotes the Fréchet derivative of U i : X → R and λi : S ×
(0,∞)→ R is a Lagrange multiplier.

The strategy is to calculate the total derivatives of equations (1) and (2)
and solve for Dfi(P, yi). We will exploit the simplicity of U i(x) written in
terms of ui. Hence, we first write equations (1) and (2) as

yi = 〈P, fi(P, yi)〉 (3)

uix(fi(P, yi), t) = λi(P, yi) · P (4)

where uix denotes the partial derivative of ui with respect to x. Taking total
derivatives on both sides of equations (3) and (4) we get

Dyi = fi(P, yi) + 〈P,Dfi(P, yi)〉
uixx(fi(P, yi), t) ·Dfi(P, yi) = λi(P, yi) + P ·Dλi(P, yi)

where we write 〈P,Dfi(P,w)i〉 to denote the linear transformation Dfi com-
posed with the linear transformation P .

Simplifying, and remembering that since ui(x) is concave, the linear trans-
formation (uixx) is negative definite and hence (uixx) is invertible for each t,
we now have

Dyi = fi(P, yi) + 〈P,Dfi(P, yi)〉 (5)

Dfi(P, yi) = λi(P, yi) (uixx)
−1 + (uixx)

−1 P ·Dλi(P, yi). (6)

12



Making a substitution of the expression of Dfi found in (6) into Dyi of
equation (5), and remembering that P is linear, we get

Dyi = fi(P, yi) + 〈P,Dfi(P, yi)〉
= fi(P, yi) + 〈P, λi(P, yi) (uixx)

−1 +Dλi(P, yi) (uixx)
−1 P 〉

= fi(P, yi) + 〈P, λi(P, yi) (uixx)
−1〉+ 〈P,Dλi(P, yi) (uixx)

−1 P 〉
= fi(P, yi) + λi(P, yi) (uixx)

−1P +Dλi(P, yi) 〈P, (uixx)−1 P 〉

Therefore,

Dλi(P, yi) =
1

〈P, (uixx)−1 P 〉
[
Dyi − fi(P, yi)− λi(P, yi) (uixx)

−1P
]

(7)

where the denominator 〈P, (uixx)−1 P 〉 does not vanish since P and (uixx)
−1

are positive operators.

We substitute the expression of Dλi found in (7) into (6) to get,

Dfi(P, yi) = λi(P, yi) (uixx)
−1 +Dλi(P, yi) (uixx)

−1 P

= λi(P, yi) (uixx)
−1+

+
(uixx)

−1 P

〈P, (uixx)−1 P 〉
[
Dyi − fi(P, yi)− λi(P, yi) (uixx)

−1P
]

What we have shown is that Dfi(P,w) can be written as the sum of the
invertible operator

λi(P, yi) (uixx)
−1 +

(uixx)
−1 P

〈P, (uixx)−1 P 〉
Dyi

and the finite rank operator

− (uixx)
−1 P

〈P, (uixx)−1 P 〉
[
fi(P, yi) + λi(P, yi)(u

i
xx)
−1 P

]
13



Now, let yi = 〈P, ωi〉 and recall that Z : S → C(M,Rn) is given by

Z(P ) =
I∑
i=1

(fi(P, 〈P, ωi〉)− ωi)

and so its Fréchet derivative DZ : TS → TC(M,Rn) is given by

DZ(P ) =
I∑
i=1

Dfi(P, yi)

=
I∑
i=1

{
λi(P, yi) (uixx)

−1 +
(uixx)

−1 P

〈P, (uixx)−1 P 〉
Dyi

}
+

+
I∑
i=1

{
− (uixx)

−1 P

〈P, (uixx)−1 P 〉
[
fi(P, yi) + λi(P, yi)(u

i
xx)
−1 P

]}

Finally, noticing again that since ui(x) is concave, the linear transfor-
mation (uixx) is negative definite and hence (uixx) is invertible. Additionally,
the sum of negative-definite linear transformations is again negative-definite.
Hence,

I∑
i=1

{
− (uixx)

−1 P

〈P, (uixx)−1 P 〉
[
fi(P, yi) + λi(P, yi)(u

i
xx)
−1 P

]}
has finite rank, and

I∑
i=1

{
λi(P, yi) (uixx)

−1 +
(uixx)

−1 P

〈P, (uixx)−1 P 〉
Dyi

}
is invertible. Therefore, DZ is written as the sum of an invertible operator
and an operator of finite rank. All we need to show then is that

α

[
I∑
i=1

{
λi(P, yi) (uixx)

−1 +
(uixx)

−1 P

〈P, (uixx)−1 P 〉
Dyi

}]
+ (1− α)I

is invertible for all α ∈ [0, 1]. But this sum is just a homotopy of positive-
definite operators.
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5 The Index Theorem of Smooth Infinite Econ-

omies

Knowing now that most economies are regular, we need to find a right way
of counting the number of equilibria. With an excess demand function that
is a Z-Rothe vector field, we may use tools from infinite-dimensional differ-
ential topology that resemble the finite-dimensional case. In particular, we
will review the notion of the Euler characteristic proposed by Tromba (1978)
and, with its aid, construct an index theorem for smooth infinite economies.

5.1 The Euler characteristic of vector fields

A zero P of a vector field v is nondegenerate if Dv(P ) : TPN → TPN
is an isomorphism. Now, suppose that a Z-Rothe vector field v has only
nondegenerate zeros, and let P be one of them. Then, Dv(P ) ∈ GR(TPN).
Tromba (1978) shows that GR(TPN) has two components; GR+(E) denotes
the component of the identity. Define

sgnDv(P ) =

{
+1, if Dv(P ) ∈ GR+(TPN)

−1, if Dv(P ) ∈ GR−(TPN)
.

The Euler characteristic is then given by the formula

χ(v) =
∑

P∈Zeros(v)

sgnDv(P )

Tromba also shows that this Euler characteristic is invariant under ho-
motopy of vector fields. All we have to do is to construct a vector field on S
that has only one singularity and that is homotopic to the aggregate excess
demand Z.

5.2 The index theorem of smooth infinite economies

We are finally ready to construct an index theorem for smooth infinite econo-
mies. Given that Fredholm maps could be simply described as maps between
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infinite-dimensional spaces that most closely resemble the finite-dimensional
case, it is no surprise that the proof of the index theorem in our setting is
very similar to that of Dierker (1972) or Mas-Colell (1985).

Suppose that the excess demand satisfies the desirability assumption of
Dierker (1972),8 namely that if Pn ∈ S and Pn → P ∈ ∂S (the boundary of
S), then

‖Z(Pn)‖ → ∞.

Suppose also that Z is bounded below and that there are only finitely
many zeros. The final ingredient before proving the index theorem is to
check that the excess demand function is a vector field that is outward point-
ing along the boundary of S. To see this, consider a sequence of prices
Pn → P ∈ ∂S. Since we have assumed that Z is bounded from below and
that ‖Z(Pn)‖ → ∞, then the limit of [1/‖Z(Pn)‖]Z(Pn) must converge to
a point z ∈ C++(M,Rn). Hence, Z is inward-pointing and therefore −Z is
outward-pointing along ∂S.

Theorem 4. Suppose that an aggregate excess demand function Z is bounded
from below and that it satisfies the boundary assumption. Suppose also that
Z has only finitely many singularities and that they are all nondegenerate.
Then, ∑

P∈ZerosZ

sgn [−DZ(P )] = 1.

Proof. The proof follows closely the proof of the index theorem in finite di-
mensions (see Dierker (1982) and Mas-Colell (1985)): it consists of two steps.
The first consists in constructing a specific vector field on S, which we call
ZQ, that has only one zero, it is inward-pointing along the boundary of S,
and for which calculating the index is simple. The second step consists in
showing that the excess demand function Z is properly homotopic to the
vector field ZQ and that this proper homotopy is through Z-Rothe vector

8This assumption, expresses the idea that every commodity is desired by at least one
agent.
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fields.

Let S̄ denote the closure of S. For any fixed Q ∈ C++(M,Rn) define the
vector field ZQ : S̄ → TS given by

ZQ(P ) =

[
Q

〈P,Q〉

]
− P.

By construction, ZQ(P ) has only one zero and is inward-pointing on the
boundary. Its derivative DZQ

(P ) : T S̄ → T (TS) is given by

DZQ
(P )(h) = −Q〈h,Q〉

〈P,Q〉2
− h

where

h 7→ −Q〈h,Q〉
〈P,Q〉2

is compact and
h 7→ −h

is invertible; then DZQ ∈ R(TPS).

Now let

−Q〈h,Q〉
〈P,Q〉2

− h = h′. (8)

We need to solve for h. Then,

Q〈h,Q〉+ h〈P,Q〉2 = −h′〈P,Q〉2.

Acting Q on both sides we get,

〈Q,Q〉〈h,Q〉+ 〈h,Q〉〈P,Q〉2 = −〈h′, Q〉〈P,Q〉2.

17



Solving for 〈h,Q〉 we get

〈h,Q〉 =
−〈h′, Q〉〈P,Q〉2

〈Q,Q〉+ 〈P,Q〉2

where the denominator never vanishes since Q ∈ C++(M,Rn). Substituting
〈h,Q〉 in (8) we then get

h = h′ +
Q

〈P,Q〉2

[
〈h′, Q〉〈P,Q〉2

〈Q,Q〉+ 〈P,Q〉2

]
.

This shows that DZQ is invertible and therefore DZQ ∈ GR(TPS). Fur-
thermore, since it is not in the same component of the identity it has to be
in GR−(TPS) and its only zero has index -1. The vector field ZQ is inward
pointing so reversing orientation will make it outward pointing with index of
+1.

Up to this stage we have constructed a specific vector field on S, which we
called ZQ, that has only one zero, it is inward-pointing along the boundary
of S, and whose index we have shown to be +1. All that we need to do is to
show that the excess demand function Z is properly homotopic to the vector
field ZQ and that this proper homotopy is through Z-Rothe vector fields.

Consider then the homotopy F : S × [0, 1]→ C(M,Rn) given by

F (P, α) = αZ(P ) + (1− α)ZQ(P )

We have seen that

DZ(P ) =
I∑
i=1

{
λi(P, yi) (uixx)

−1 +
(uixx)

−1 P

〈P, (uixx)−1 P 〉
Dyi

}
+

+
I∑
i=1

{
− (uixx)

−1 P

〈P, (uixx)−1 P 〉
[
fi(P, yi) + λi(P, yi)(u

i
xx)
−1 P

]}
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and

DZQ(P ) = −Q〈·, Q〉
〈P,Q〉2

− I

Hence

DF (P, α) = αDZ(P ) + (1− α)DZQ(P )

= α

I∑
i=1

{
λi(P, yi) (uixx)

−1 +
(uixx)

−1 P

〈P, (uixx)−1 P 〉
Dyi

}
+ (1− α) {−I}

+ α

I∑
i=1

{
− (uixx)

−1 P

〈P, (uixx)−1 P 〉
[
fi(P, yi) + λi(P, yi)(u

i
xx)
−1 P

]}
+ (1− α)

{
−Q〈·, Q〉
〈P,Q〉2

}

Finally notice that since α > 0 and 1− α > 0, then

α
I∑
i=1

{
λi(P, yi) (uixx)

−1 +
(uixx)

−1 P

〈P, (uixx)−1 P 〉
Dyi

}
+ (1− α) {−I}

is invertible, and

α
I∑
i=1

{
− (uixx)

−1 P

〈P, (uixx)−1 P 〉
[
fi(P, yi) + λi(P, yi)(u

i
xx)
−1 P

]}
+(1−α)

{
−Q〈·, Q〉
〈P,Q〉2

}
has finite rank.

Hence, Z is properly homotopic to the vector field ZQ and that this proper
homotopy is through Z-Rothe vector fields.
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6 Concluding Remarks

We conclude from Theorem 4 that the number of equilibria of smooth infinite
economies generically is odd. In particular, it cannot be zero so this gives a
new proof of existence.

Also, as a corollary of Theorem 4, we can provide an infinite-dimensional
analogue of Dierker (1972); Dierker shows the following.

Theorem 5. (Dierker, 1972) If the Jacobian of the excess supply function
is positive at all Walras equilibria, then there is exactly one equilibrium.

We have shown that:

Corollary 1. If the sign of the derivative of the excess supply function is
positive at all Walras equilibria, i.e., if −DZ(P ) ∈ GR+(TPS), then there is
exactly one equilibrium.

The logic behind this corollary is simple. The sign of the derivative of
the excess supply function is either +1 or −1. If this sign is positive at all
Walras equilibria, and the sum of these needs to be equal to +1, there can
only be one.
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Appendix: Mathematical Definitions.

Definition 5. A homotopy is any family of maps ft : X → Y , between
topological spaces, t ∈ I = [0, 1], such that the associated map F : X×I → Y
given by F (x, t) = ft(x) is continuous. One says that two maps f0, f1 : X →
Y are homotopic if there exists a homotopy ft connecting them.

Definition 6. A topological space is said to be contractible if the identity
map iX : X → X is homotopic to a constant map.

Definition 7. A Banach space (X, ‖·‖) is a normed vector space (over the
real numbers throughout) that is complete with respect to the metric d(x, y) =
‖x− y‖.

Definition 8. A Hilbert space H is a vector space with a positive-definite
inner product 〈·, ·〉 that defines a Banach space upon setting ‖x‖2 = 〈x, x〉
for x ∈ H.

Definition 9. A bounded linear functional h(x) defined on a Banach
space X is a linear mapping X → R such that |h(x)| ≤ K‖x‖X for some
constant K independent of x ∈ X. The set of all bounded linear functionals
on X, denoted X∗, is called the conjugate space of X. It is a Banach
space with respect to the norm ‖h‖ = sup|h(x)| over the sphere ‖x‖X = 1. If
(X∗)∗ = X, then the space X is called reflexive.

Definition 10. One says that a set M of a Banach space X is compact
set if M is closed (in the norm topology) and such that every sequence in M
contains a strongly convergent subsequence.

Definition 11. A linear operator L with domain X and range contained
in Y , (X,Y Banach spaces) is a bounded linear operator if there is a
constant K independent of x ∈ X such that ‖Lx‖Y ≤ K‖x‖X for all x ∈ X.
The set of such maps for fixed X,Y is again a Banach space, denoted L(X, Y )
with respect to the norm ‖L‖ = sup‖Lx‖Y for ‖x‖X = 1.

Definition 12. A linear operator C ∈ L(X, Y ) is called a compact op-
erator if for any bounded set B ⊂ X, C(B) is conditionally compact in
Y . Bounded linear mappings with finite-dimensional ranges are automati-
cally compact; and conversely, if X and Y are Hilbert spaces, then a compact
linear mapping C is the uniform limit of such mappings.
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Relevant properties of linear compact operators. Let C ∈ L(X,X)
be compact, and set L = I + C. Then

1. L has closed range.

2. dim kerL = dim cokerL <∞.

3. there is a finite integer β such that X = ker(Lβ)⊕ range(Lβ) and L is
a linear homeomorphism of range(Lβ) onto itself.

Definition 13. Let f ∈ C1(U, Y ), U ⊂ X, X, Y Banch spaces. Then,
x ∈ U is a regular point for f if f ′(x) is a surjective linear mapping in
L(X, Y ). If x ∈ U is not regular, x is called singular point. Similarly,
singular values and regular values y of f are defined by considering
the sets f−1(y). If f−1(y) has a singular point, y is called a singular value,
otherwise y is a regular value.

Definition 14. An operator f ∈ C0(X, Y ) is said to be a proper operator
if the inverse image of any compact set C in Y , f−1(C) is compact in X.
The importance of this notion resides in the fact that the properness of an
operator f restricts the size of the solution set Sp = {x : x ∈ X, f(x) = p}
for any fixed p ∈ Y .

Definition 15. A map f betwen topological space X, Y is said to be a proper
map if the inverse image of each compact subset of Y is a compact subset of
X.
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