EVALUATING THE NET BENEFITS OF MACROPRUDENTIAL POLICIES: A COOKBOOK

Network models, stress testing and other tools for financial stability monitoring and macroprudential policy design and implementation
Mexico City, 11-12 of November, 2015

Nicolas Arregui, Jaromir Benes, Ivo Krznar, Srobona Mitra, Andre O. Santos
Motivation

- Policies seek to address externalities (De Nicolo, Favara and Ratnovski, 2012)
 - Correlated risk taking of financial institutions during expansionary phase
 - Fire sales amplify the contractionary phase
 - Contagion propagates shocks through networks

- Externalities \rightarrow Systemic Risk Indicators
- Indicators \rightarrow Output forecast

- Measuring net benefits of policy: in terms of output forecast
Steps

- Framework for evaluating net benefits of policy
 - Benefits: lower probability and depth of crisis
 - Costs: lower intermediation and output from overestimating risks

- Measurements of ingredients
 - Probability of crisis: What are the warning signs?
 - Depth of output loss: What is the damage following a crisis?
 - Output loss if no crisis: What are the costs of policy?
 - How effective are policies?
 - Leakages
Policy Time Line

Steps Involved:
- Signal Issued
 - Determine whether:
 - Credit growth excessive
 - Credit boom identified
 - Liquidity risks are high

Policy Deployed
- Effects of policy...
 - Reserve Requirements
 - Capital Requirements
 - Provisioning
 - Loan-to-Value limits
 - Debt-to-Income limits

Intermediate Targets Affected
- ...on intermediate targets growth:
 - Real Credit
 - Real House Price
 - Loan-Deposit Ratio
 - Foreign Liabilities/
 - Foreign Assets

Costs
- Cost of tightening up on intermediation

Benefits
- Lower probability and depth of crisis

Effect on (forecast of) Output

Main References:
- IMF (2011b)
- Dell’Arriccia et al (2012)
- New staff estimates
- Lim et al (forthcoming)
- New staff estimates
- New staff estimates
- New staff estimates
- New staff estimates
- BCBS (2011a)
Net Benefits of Policy

Expected Y loss without policy: \(1 - pl\)

Expected Y loss with policy: \(1 - p*l^*\)

Cost of policy: Over-regulation and loss in intermediation and output, \(\alpha\)

\[
\frac{1 - p*l^*}{1 - pl} - \frac{1}{1 - \alpha} \geq 0
\]
Analytical Building Blocks

CORE Macrofinancial MODEL
Interactions between financial and real economic activity, α

- Probability of crisis, p
- Loss given crisis, l
- Probability of crisis, p^*
- Effects of macroprudential policies
- Loss given crisis, l^*
“p”: Early Warning—Credit!

- Credit aggregates are key.
 - Low chance of missing a crisis: change in Credit/GDP >3-5 pp (IMF GFSR, 2011)
 - Low chance of overregulation
 - “gap” > 1.5 s.d. & growth > 10% (Dell’Ariccia et al, 2012)

- Range better than one threshold
 - Flag risks at the lower (GFSR) threshold and escalate concerns and implement policies by the Dell’Ariccia et al threshold

- All sources of credit, not just from banks
“p”: Early Warning—Combine!

- Panel Logit model (RE)
- 1970-2010, ADV & EM

Prob (crisis):
- Credit-GDP change (t-2)
- Real house price (RHP)_{(t-2)}\%
- (DUM if Credit-GDP change >3) * RHP_{(t-2)}\%
“I”: Loss Given Crisis

Model:
- Focus on GDP loss measures
- Measurement:
 - Take 5y window.
 - Compute % difference from potential output (based on 5y pre-crisis avg. growth rate).
 - When actual > potential, set at zero.
 - Cost of crisis = average difference over the window

Crisis Cost (% trend output)

Fall in GDP 1-5 years since financial crisis (in percent of the long-run forecast)
“I”: Loss related to risk-taking

- Higher pre-crisis credit growth related to higher depth of crisis
- Robust across different depth measures
- Policies that reduce credit growth reduces depth

Depth of crisis

Dependent variable: cost

<table>
<thead>
<tr>
<th>Explanatory variable</th>
<th>OLS estimation</th>
<th>Tobit estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currency crisis dummy</td>
<td>3.004* 0.056</td>
<td>2.755* 0.079</td>
</tr>
<tr>
<td>Change in credit to GDP (-2)</td>
<td>0.578*** 0.000</td>
<td>0.575*** 0.000</td>
</tr>
</tbody>
</table>

Number of observations: 67

Note: The dependent variable is the cost of a financial crisis ("cost") as described in the text. The coefficients reported for each method are marginal effects, so are directly comparable. The p-values are shown under the estimated coefficients. ***, **, and * indicate statistical significance at the 1 percent, 5 percent, and 10 percent levels of confidence based on robust standard errors, respectively.

OLS and Tobit Marginal Effects
“α”: Cost of Policy

- Acknowledge asymmetric effects of credit on real economic activity
 - Positive boost in normal times (healthy or unhealthy)
 - Debt overhang (of which bank credit can be symptomatic) and adverse effects in times of financial distress

- Need to combine empirical models with structural models (endogenous risk interactions between financial and real sectors)
“α”: Cost of Policy (concl.)

Effect of 1 pct Increase in Credit on GDP

Positive about 0.2 % when no distress

Negative about -1 % when high distress

Bank Distress Index
Externality 1: Financial institutions take correlated risks during the boom phase

Externality 2: The risk of fire sales, that causes a decline in asset prices amplifying the contractionary phase of the financial cycle.
Policy Effectiveness: On Average

- **Credit growth and house prices** (intermediate targets related to correlated-risk taking externality): LTV/DTI limits, reserve requirements and risk weights effective

- **Loan/Deposit and Net open position** (intermediate targets related to fire sales externality)
 - tighter RRs and DTIs seem to work towards lowering the asset-liability funding mismatches.
 - LTV/DTI limits and higher risk weights slow capital inflows
“p*”, “l*”: Lower Probability and Depth, from Policy

- Policies affect indicators
- Indicators affect probability of crisis, $p \rightarrow p^*$
- Indicators affect depth of crisis, $l \rightarrow l^*$
Net Benefits of Policies

<table>
<thead>
<tr>
<th>Reserve Requirements (RR)</th>
<th>Capital Risk Weights</th>
<th>Loan-to-Value (LTV) limits</th>
<th>Debt-to-Income (DTI) limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.045</td>
<td>0.038</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>0.065</td>
<td>0.050</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>0.0049</td>
<td>0.0101</td>
<td>0.0044</td>
</tr>
</tbody>
</table>

Average Effects of Tightening

- Credit Growth changes in two-years by (in percentage points)
 \(-2.45\) - \(-5.04\) - \(-2.18\) - \(-2.63\)

- House price growth changes in two-years by (in percentage points)
 \(-5.36\) - \(-5.79\) - \(-3.70\) - \(-1.98\)

- Loss given crisis, \(l^*\):
 \(0.065\)

- Cost on output forecast, \(\alpha\):
 \(0.0049\)

\[(1 - p^{*}/l^*)(1/1-p) \geq 0 \]

1 See Figure 5 and Annex 5 for estimates of \(p\) and \(p^*\), given credit growth and house price growth. See Annex 4 and Figure 8 for \(l\). 2 See Annex 6 Table 1 for the results on changes in the credit-GDP ratio. See the note under Figure 9 for the calculation of the two-year effects. 3 See Annex 6 Table 2 for the results on real house price growth. See the note under Figure 9 for the calculation of the two-year effects. 4 See Annex 4 and Figure 8: Average loss given crisis is 0.08. With slowing credit growth, loss is lowered. 5 For the United States, one percentage point lower credit growth reduces the output forecast by 0.2 percent. See Annex 3. 6 See expression 3.1 in the text for the expression on net benefits.
Policy Leakages

- Cross-border lending (Central and Eastern Europe)
 - RRs (and provisioning requirements) leak
 - Combine capital tools and LTV (Ext 1) and DTI (Ext 2)

- Foreign bank branches (UK)
 - Capital tools may not work fully (Aiyar et al)
 - Combine LTV and DTI
 - RR?

- Nonbank financial institutions (US)
 - LTV and DTI
 - Coordinate with other nonbank supervisors
 - Capital and RRs difficult to implement
Conclusions

- Early Warning model performance most important
- Role of credit key, but must combine with other indicators
- All sources of credit
- Net benefits higher with
 - Greater policy effectiveness
 - Sensitive to macro-financial linkages: credit-output sensitivities
Conclusions

- Most effective policies:
 - RRs, Risk weights (capital), LTV
- Policies have prolonged impacts
- Beware of policy leakages
 - Tailor tools to financial structure of country
- Basic recipe proposed in this paper: Country-specific flavors and garnishes encouraged!
- Improvements: More evidence on effectiveness; confidence intervals
Thank you

Comments and suggestions?

<table>
<thead>
<tr>
<th>Dependent variable: Credit/GDP y/y growth</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit/GDP growth_{t-1}</td>
<td>0.83 ***</td>
<td>0.89 ***</td>
<td>0.88 ***</td>
<td>0.90 ***</td>
<td>0.71 ***</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>GDP Growth_{t-1}</td>
<td>0.33 ***</td>
<td>0.04</td>
<td>0.17 ***</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>0.04</td>
<td>0.05</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>Lending rates_{t}</td>
<td>0.01</td>
<td>-0.14 ***</td>
<td>-0.02</td>
<td>-0.02</td>
<td>0.12 *</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>Reserve requirement</td>
<td>-0.54 **</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk weights</td>
<td></td>
<td>-0.89 ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provisioning</td>
<td></td>
<td></td>
<td>-0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTV</td>
<td></td>
<td></td>
<td></td>
<td>-0.39 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>DTI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.82 ***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.26</td>
</tr>
</tbody>
</table>

Number of observations: 638, 631, 542, 705, 374
Number of countries: 15, 15, 13, 17, 9
Evidence: Regression Results (2)

Table A6.2. Effects of Macroprudential Measures on Real House Price Growth: Panel GMM Estimation (2000-2011)

<table>
<thead>
<tr>
<th>Dependent variable: Real House prices y/y growth</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real house price</td>
<td>0.86 ***</td>
<td>0.84 ***</td>
<td>0.84 ***</td>
<td>0.81 ***</td>
<td>0.77 ***</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>GDP Growth</td>
<td>0.36 ***</td>
<td>0.28 ***</td>
<td>0.41 ***</td>
<td>0.33 ***</td>
<td>0.16 ***</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>0.05</td>
<td>0.07</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>Lending rates</td>
<td>-0.04 **</td>
<td>-0.13 ***</td>
<td>-0.05 **</td>
<td>-0.67 ***</td>
<td>-0.24 **</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.05</td>
<td>0.02</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>Reserve requirement</td>
<td>-1.07 **</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk weights</td>
<td>-1.24 ***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provisioning</td>
<td></td>
<td>-0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTV</td>
<td></td>
<td></td>
<td>-0.86 **</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTI</td>
<td></td>
<td></td>
<td></td>
<td>-0.52 **</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.24</td>
<td></td>
</tr>
</tbody>
</table>

Number of observations: 433, 431, 428, 593, 307
Number of countries: 11, 12, 11, 15, 8
Other Evidence on Effectiveness

Kuttner and Shim (2013)

Korea: Impact of Lowering LTV and DTI Limits

<table>
<thead>
<tr>
<th>Long run effect on: (in percent)</th>
<th>Ten percentage point lower LTV limit</th>
<th>Ten percentage point lower DTI limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortgage loans</td>
<td>-2.2</td>
<td>-2.0</td>
</tr>
<tr>
<td>House prices</td>
<td>-2.8</td>
<td>-1.1</td>
</tr>
<tr>
<td>Nominal GDP</td>
<td>-0.8</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

Jacome and Mitra (2015)