Discussion of Anand, Gauthier, and Souissi:
Quantifying Contagion Risk in Funding Markets:
A Model-Based Stress-Testing Approach

Jessie Jiaxu Wang
Arizona State University

Mexico City, Nov 12, 2015
Market Liquidity and Funding Liquidity

- Initial Losses
- Market Illiquidity
- Updating Belief
- Funding Illiquidity
- Run
This Paper: twin-illiquidity in stress testing
This Paper: twin-illiquidity in stress testing

Initial Losses

Market Illiquidity

Funding Illiquidity

Updating Belief

Run

Run

Run
Coordination failure and balance sheet opacity generate contagious self-fulfilling bank run.

Quantify this effect in stress testing.
This Paper: twin-illiquidity in stress testing

- Coordination failure and balance sheet opacity generate contagious self-fulfilling bank run.

- Quantify this effect in stress testing

- **Comments**: clean model with direct policy applications
 - the model
 - the results
 - policy implications
Comment: model

- What is the role of FDIC, LOLR, and interbank lending?
- What are banks’ endogenous response to “vicious illiquidity”?
 - signal?
 - hold more cash? deleverage?
 - hold more correlated assets?
Comment: model

- What is the role of FDIC, LOLR, and interbank lending?
- What are banks’ endogenous response to “vicious illiquidity”?
 - signal?
 - hold more cash? deleverage?
 - hold more correlated assets?
- Exposition: players, strategy, payoff, equilibrium concept
Comment: vicious illiquidity

Prop 3: Vicious illiquidity happens when

\[1 < \frac{1 - P(r \mid H)}{1 - P(r \mid L)} < \frac{P(r \mid L)}{P(r \mid H)} \]

(*)
Prop 3: Vicious illiquidity happens when

\[
1 < \frac{1 - P(r \mid H)}{1 - P(r \mid L)} < \frac{P(r \mid L)}{P(r \mid H)} \tag{⋆}
\]

- This is equivalent to \((P(r \mid H) - \frac{1}{2})^2 > (P(r \mid L) - \frac{1}{2})^2\)

- This works.
Comment: vicious illiquidity

Prop 3: Vicious illiquidity happens when

$$1 < \frac{1 - P(r | H)}{1 - P(r | L)} < \frac{P(r | L)}{P(r | H)} \quad (\star)$$

- This is equivalent to \((P(r | H) - \frac{1}{2})^2 > (P(r | L) - \frac{1}{2})^2\)

- This works.
Comment: vicious illiquidity

Prop 3: Vicious illiquidity happens when

\[
1 < \frac{1 - P(r | H)}{1 - P(r | L)} < \frac{P(r | L)}{P(r | H)}
\]

- This is equivalent to \((P(r | H) - \frac{1}{2})^2 > (P(r | L) - \frac{1}{2})^2\)

- This does not work.
Comment: vicious illiquidity

Prop 3: Vicious illiquidity happens when

\[1 < \frac{1 - P(r | H)}{1 - P(r | L)} < \frac{P(r | L)}{P(r | H)} \]

- This is equivalent to \((P(r | H) - \frac{1}{2})^2 > (P(r | L) - \frac{1}{2})^2 \)

- This does not work.
Prop 3: Vicious illiquidity happens when

\[1 < \frac{1 - P(r | H)}{1 - P(r | L)} < \frac{P(r | L)}{P(r | H)} \]

This is equivalent to \((P(r | H) - \frac{1}{2})^2 > (P(r | L) - \frac{1}{2})^2\)

If \(P(r) = 0.5\) is benchmark, state H is more informative about run?
Comment: price spread

Prop 4: Higher ψ_H strengthens condition ★

\[
\frac{1 - P(r | H)}{1 - P(r | L)} < \frac{P(r | L)}{P(r | H)}
\] (★)
Prop 4: Higher ψ_H strengthens condition ★

\[
\frac{1 - P(r \mid H)}{1 - P(r \mid L)} < \frac{P(r \mid L)}{P(r \mid H)}
\] (★)

• The proof gives $\frac{\partial \text{LHS}}{\partial \psi_H} < \frac{\partial \text{RHS}}{\partial \psi_H}$.

• This means if Condition ★ holds at ψ_H^0, then it also holds $\forall \psi_H > \psi_H^0$.

• Need to check how LHS and RHS behave on other parameters.
Prop 5: For $N \geq 2$ banks, Bayesian updating terminates after at most N rounds.

- After each round, illiquid bank cannot turn liquid; but liquid bank can turn illiquid.

- If no more run, belief stops updating; otherwise, belief turns worse, and more run.

Downward bias by construction?
Prop 5: For $N \geq 2$ banks, Bayesian updating terminates after at most N rounds.

- After each round, illiquid bank cannot turn liquid; but liquid bank can turn illiquid.

- If no more run, belief stops updating; otherwise, belief turns worse, and more run.

<table>
<thead>
<tr>
<th>$N = 3$</th>
<th>Round 1</th>
<th>Round 2</th>
<th>Round 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>× × ×</td>
<td>× × ×</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comment: convergence

Prop 5: For $N \geq 2$ banks, Bayesian updating terminates after at most N rounds.

- After each round, illiquid bank cannot turn liquid; but liquid bank can turn illiquid.

- If no more run, belief stops updating; otherwise, belief turns worse, and more run.

<table>
<thead>
<tr>
<th>$N = 3$</th>
<th>Round 1</th>
<th>Round 2</th>
<th>Round 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>× × ×</td>
<td>× × ×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× × ✓</td>
<td>× × ✓/×××</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prop 5: For $N \geq 2$ banks, Bayesian updating terminates after at most N rounds.

- After each round, illiquid bank cannot turn liquid; but liquid bank can turn illiquid.

- If no more run, belief stops updating; otherwise, belief turns worse, and more run.

<table>
<thead>
<tr>
<th>$N = 3$</th>
<th>Round 1</th>
<th>Round 2</th>
<th>Round 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>×××</td>
<td>×××</td>
<td></td>
<td></td>
</tr>
<tr>
<td>××✓</td>
<td>××✓/×××</td>
<td></td>
<td></td>
</tr>
<tr>
<td>×✓✓</td>
<td>×✓✓/×××</td>
<td></td>
<td>××✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>××✓</td>
<td>/×××</td>
</tr>
</tbody>
</table>
Comment: convergence

Prop 5: For $N \geq 2$ banks, Bayesian updating terminates after at most N rounds.

- After each round, illiquid bank cannot turn liquid; but liquid bank can turn illiquid.

- If no more run, belief stops updating; otherwise, belief turns worse, and more run.

<table>
<thead>
<tr>
<th>$N = 3$</th>
<th>Round 1</th>
<th>Round 2</th>
<th>Round 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\times \times \times$</td>
<td>$\times \times \times$</td>
<td>$\times \times \times / \times \times \times$</td>
<td>$\times \times \times / \times \times \times$</td>
</tr>
<tr>
<td>$\times \times \checkmark$</td>
<td>$\times \times \checkmark / \times \times \times$</td>
<td>$\times \times \checkmark / \times \times \times$</td>
<td>$\times \times \checkmark / \times \times \times$</td>
</tr>
<tr>
<td>$\checkmark \checkmark \checkmark$</td>
<td>$\checkmark \checkmark \checkmark / \times \times \times / \times \times \checkmark / \checkmark \checkmark \checkmark$</td>
<td>$\checkmark \checkmark \checkmark / \times \times \times / \checkmark \checkmark \checkmark / \checkmark \checkmark \checkmark$</td>
<td>$\checkmark \checkmark \checkmark / \times \times \times / \checkmark \checkmark \checkmark / \checkmark \checkmark \checkmark$</td>
</tr>
</tbody>
</table>

- Downward bias by construction?
Comment: stress testing

- What about a structural approach?
 - This way you can quantify the fraction of bank insolvency due to vicious illiquidity.
 - Counterfactual analysis: what if stress testing results were disclosed?
 - Quantify the relative role of Bayesian update vs. fire-sales (conventional way to model liquidity spiral)
Comment: stress testing

- When to release the stress testing results strategically?
 - Very controversial.
 - Fed Governor Tarullo: *it allows investors and other counterparties to better understand the profiles of each institution*
 - Clearing House Association: *unanticipated and potentially unwarranted and negative consequences to covered companies and U.S. financial markets*
 - Goldstein and Leitner (2015)
Conclusion

- The paper is on an important timely topic.
- Market illiquidity and funding illiquidity in stress testing.
- Would be nice to quantify the effects using a structural approach.
- Very interesting paper, highly recommended!