Discussion of
“A Framework For Modelling System-Wide Stress Dynamics”
by R. Baptista, J.D. Farmer, A. Kleinnijenhuis, P. Nahai-Williamson, T. Wetzer

Second Conference on Network models and stress testing for financial stability
Mexico City
September 26-27, 2017

Sofia Priazhkina, Financial Stability Department, Bank of Canada

Disclaimer: The views and findings of these slides do not necessarily represent the views of the Bank of Canada.
www.bank-banque-canada.ca
Short Summary

- Banking stress-testing model: bottom-up, agent-based modeling
- Rich framework for analyzing interaction of 2nd round effects: substitute/complements?
- Types of financial institutions (FI):
 - heterogeneous banks (B),
 - hedge fund (HF),
 - asset manager (AM),
 - cash provider (CPr),
- Types of contracts between FIs:
 - collateralized debt (repo);
 - unsecured debt (interbank loans);
Short summary: modelling assumptions

- Markets:
 - Interbank loans (B → B)
 - Repo (B, CPr → B, HF)
 - Common assets (B, HF, AM)

- Scenario: shock to the value of sub-prime MBS (held by “universal bank”)

- Behaviors of agents:
 - B maintain liquidity ratio, then leverage ratio:
 - sell HQLA > reduce repo > reduce I/B lending > sell other assets;
 - HF maintain leverage ratio: sell assets proportionally;
 - CPr cut funding if leverage ratios of B drop (exog.)
 - AM sell assets proportionally if face redemptions, i.e. asset values drop sufficiently (exog.)
Short summary

- Amplification mechanisms:
 - fire sales
 - MTM accounting (B, HF, AM);
 - collateral devaluation (B, HF);
 - collateral requirements
 - liquidity withdrawals
 - investors of AM,
 - depositors/repos/interbank loans of B
Short summary: main results

- Amplification mechanisms are non-linearly dependent on initial shock (min threshold)
- Shock propagates with different intensity: commercial bank is less affected than investment bank or asset manager (but not hedge fund)
- Asset managers amplify losses of investment banks
- Hedge funds amplify losses of commercial banks but shrink losses of investment banks
- Fire sales – necessary for propagation of losses
- Results are more sensitive to equity regulation rather than liquidity regulation.
Evaluation: implications for financial stability

- High importance for macro-prudential stress-testing
- **2007-09: Would it be the same crisis without shadow banking and market complexity?**
 - AIG, SIVs, rating agencies
 - instability of MMFs and maturity mismatch → run on repo and ABCP,
 - difference in regulation between investment banking and traditional banking (Bear Stearns and Lehman Brothers),
 - lack of high quality collateral;
- **2017: more non-bank FIs (regulatory arbitrage/fin. innovation) and more interconnected financial system**
Evaluation: implications for financial stability

- *Paper highlights importance of considering liquidity considerations*
 - Credit crunch of interbank and repo market --> core systemic risk implication
 - Repo market: need for high-quality collateral
 “Do I sell or do I repo?”
 - Impact of LCR on financial stability of banks and other FIs
 - Impact of MMF reform on overall systemic risk
Comments: nature of repo contracts

- This paper: network approach = bilateral repo exposures are stable, agents make rollover decision similar to interbank loans
- Suggestion: use market approach: less about relationships, more about supply/demand
 - Repo is mostly short-term → network is likely to change fast
 - Collateral reduces importance of long-term relationships (credit risk)
 - Can you observe stable repo network empirically?
- Market liquidity and competition effects should be captured: institutions bid more aggressively to secure funding, lenders pull back liquidity from the market
Comments: nature of repo contracts

- Why do you need *banks to intermediate repo* contracts from CP to HF? BNYM and JPMC?

- *Re-hypothecation* – clarify the mechanism (operational risk if “fail to deliver”)

- Motivation by “*tri-party repo*” is questionable: mostly stable margins and amount of funding during 2007-09*, different from “margin spirals” on bilateral repo market**

*Krishnamurthy, Nagel, and Orlov (2011), Copeland, Martin and Walker (2011)

**Gorton and Metrick (2012), Copeland, Martin and Walker (2011)
Comments: granularity of balance sheet

- This paper: introduction emphasizes benefits of using *individual contracts* relative to *aggregated exposures*; however simulation is lacking many b/sheet details

- Shed lights on benefits of very *granular data*? Is it realistic? Do we want to capture trend or a moment in time?

- *Flight-to-quality* is not captured
 - FIs should prefer borrowing using HQLAs
 - in real life, scarcity of high quality collateral drives margins up
 - to capture, need to abstract from fixed asset portfolio

- With more flexible balance sheets (*strategic fire sales*) → expect smaller losses
Comments: modelling incentives of FIs

- Model is very sensitive to calibration:
 - predictions are frightening: 10% loss in MBS \rightarrow ~85% equity loss for three FIs
 - E.g. run-off rates should depend on the solvency of the borrower (currently funding rate, withdrawals and run-off rate are not consistent)
Comments: modelling incentives of FIs

- Keeping up with promises in the Introduction:
 - Why would someone buy discounted assets?
 - *profitability should drive behaviors* in addition to solvency and liquidity (now rates are not modelled)
 - *LCR requirement* should be well-specified
 - only cash outflows but not inflows are modelled
 - will a bank sell equities instead of gov. bonds to satisfy LCR?
 - weighted assets should be included
Other comments

- Emphasize role of information
 - Currently hedge fund experiences smaller impact than other FIs,
 - Currently fire sales drive the results,

- Propagation of shock between asset markets: equities are sold → bond prices are impacted

- More standard approach to networks
 - Eisenberg and Noe (2001) as an alternative to LGD=1 → smaller losses
Concluding remarks

- Agenda and framework for banking ST modelling
- Numerical example with different FIs and contracts
- Important contribution: model captures more market complexity than usual, accounts for different regulatory frameworks and business models of FIs
- Future work: reduce calibration error by modelling incentives more precisely, verify assumptions about relationships of FIs, be more specific about regulatory requirements
- Follow the long-term plan proposed by the authors
Thank you